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Talk Outline

e Feedbacks and Equilibrium Sensitivity

e Climate OSSE

— Optimal Methods/Multi-pattern regression
— Response: GPS Radio Occultation (RO)
— Feedbacks: Clear-sky Thermal IR Spectra

e Discussion
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Climate Feedback

The Greenhouse effect

Qutgolng solar radiation:
103 Watt per m®

Some of the infrared radiation is
absorbed and re-emittad by the
Solar radiation passes thraugh greanhouse gas molaculas. The
the clear atmosphere. direct effect is the warming of the
Incoming solar radiation: earth’s surface and the tropasphere,
343 Watt per m®

Surface-gains more heat and
infrared radiation Is'emitied again

Solar energy s absorbed by the
th'ssuraceand warmsit...  ...andis-converted into heat causing
168 Watt parm? the-emission of longwave (infrared)
= L radiation back to the atmosphere.
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Climate Feedback (2)

Radiative forcing AF4
Longwave cooling I' AT

Amplification or suppression of greenhouse effect, y AT

AR WRH I 2% PR B HR AR B

103 Watt per m®

Some of the infrared radiation is
absorbed and re-emittad by the
Solar radiation passes thraugh greanhouse gas molaculas. The
the clear atmosphere. direct effect is the warming of the
Incoming solar radiation: earth’s surface and the troposphere.
343 Watt per m?

AF,, + Z y VAT + Z y™AT =T AT |

Surface-gains more heat and
infrared radiation |5 ~m*nd acain

SW
oF>" dx.
ibythe SW_ i
msit.  ...andisconverted into heat causing l
; ‘he-emissicn of longwave (infrared) ox, dT
. radiation back to the atmosphers.

P LW
AT = AF, . ! T . - OF =" dx,
: : F— ox, dT

T S Ty R Sy A, sthoel oF paography; Uniled Siales Enviconmental Protesion Agency (EPA), Washirgon; Climabe change
1985, The acience ol cimate a!mge m'nm:wnnodnmir.ggm,a 1 Io e sspand assessment rapart al lhe infargevemnmental panel on climale chargs, UNEP and WD, Cambridge uniersily press. 1986
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Feedback Uncertainty

e Colman 2003

o Colman 2003 (RCMs)
= Soden & Held 2005
> S&H 2005 (Fixed RH)
= Winton 2005
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Bony, S., et al., 2006: How well do we understand and evaluate climate
change feedback processes? J, Climate, 19, 3445-3482.
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Feedbacks and Climate Prediction

Hansen, J. et al., 1985: Climate response ;"Tw‘?*':“z’
times: Dependence on climate sensitivity
and ocean mixing. Science, 229, 857-859.
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Fig. 2. Ocean surface warming (AT) and the
T(t T + fs Ne AU dt’ ethbrlum warming (AT,y) due to CO, added
( ) ﬁ I d( ) to the atmosphere in the period 1850 to 1980
for the 1-D box diffusion ocean model as a

function of for AT (2 * CO,).
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Climate OSSE: The Science of a Benchmark

Benchmark
Measurement

e Traceable to

e Minimize sampling
error

international standards

m

Climate OSSE

Simulate trends in
observable as
produced by different
models

Explore information
content with various
contravariant
fingerprints

-

Climate

Uncertainty
e Shortwave forcing

e Longwave forcing

¢ C(Climate feedbacks &
sensitivity

i 8

Climate OSSE Results

¢ Detection time and accuracy requirements

¢ How measurement constrains climate predictability

¢ Relative redundancy with other benchmark data types
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Calibration: Double Differencing

Hardy, K.R., G.A. Hajj, and E.R. Kursinski, 1994: Accuracies of atmospheric
profiles obtained from GPS occultations. Int. J. Sat. Comm., 12, 463-473.
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Optimal Fingerprinting/Multi-pattern Regression

We are limited by the naturally occurring inter-annual variability of
the climate system...so optimize.

Find signal amplitudes (a,) and uncertainty (Z,) in a data set (d)
according to the signals’ patterns (s,) against a background of
natural variability, the eigenvectors and eigenvalues of which
are e, and A,
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GPS Radio Occultation

o Refractivity
N=(n-1)x10°= (77.6KhPa‘1)§+(363><103 K’ hPa'l)lT?—év

e "Dry” pressure

e p(h)
py(h)=(4.402x10"*hPa m") [ N dh = p(h)+(7521K) | & ;lp
h

e (Geopotential height
1

h= ((D(r)_%gzrsz)_(q)_Egzrsz)msl:|/g0
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GPS RO Dry Pressure Tendency

GFDL-CM2.0 GFDL-CM2.1 GISS-AOM GISS-EH

0.2 0.4
d(In p,)/dt (% decade™)
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How Does GPS RO Test GCMs?

a = global average surface air temperature, d = GPS RO dry pressure [height]

Height [km]
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Poleward
migration of jet
streams

Increased ITCZ
humidity

Near perfect
tracking of global
average surface
air temperature
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Thermal Infrared Spectra
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Thermal Infrared Spectra (2)

o1

o1

Tropics, SRES A1B, clear
NCAR CCSM3

MPI/ECHAMS5-OPYC
UKMO HadCM3
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How Does Spectral IR Test GCMs?

Carbon Dioxide

500 1000 1500 2000

Water Vapor

500 1000 1500 2000
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Tropospheric Temperature

e Cumulative Signal
0.0F o \ \

500 1000 1500 2000

Stratospheric Temperature

A Radiance [10°° rad]
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Applied Scalar Prediction

A Radiance [W m? ster™]

£
1]
1=
=
3
3
3
(nd
<]

10
Time [years] Time[years]

21 October 2008 CLARREO: Feedbacks and Sensitivity



Summary

e Trends in GPS radio occultation data bear
strongly on global average surface air
temperature.

e Trends in the outgoing longwave spectrum can
be used to monitor longwave forcing and
constrain all longwave feedbacks
observationally. Optimization in space necessary
to reduce detection times.

e Work in progress includes simulations in cloudy
skies and shortwave trends.
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Applied Scalar Prediction

Find signal amplitudes (a,) and uncertainty (Z,) in a data set (d)
according to the signals’ patterns (s,) against a background of
natural variability, the eigenvectors and eigenvalues of which
are e, and A,
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Applied Scalar Prediction

Signal #1 Signal #2 Signal #3 Signal #4

Find signal amp
according to
natural varia
are e, and A
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The Climate Benchmark

d =R, cos '[cos(4, — 4, )cos ¢, cos @, +sing sing,| o Lat-lon grid is standardized

=6816.74 km e Uncertainty derived from

independent tests

62°26.53" N

14°23.85"

46°57.00" N
7°27.00" E

-

X
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How Not to Monitor Climate...

e Tape measure calibration is

unstandardized

e Tape measure subject to
failure (by scissors)
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How Does Spectral IR Test GCMs?
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How Does Spectral IR Test GCMs?
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How Does Spectral IR Test GCMs?

Anthropogenic Forcing

Climate Response
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How Does Spectral IR Test GCMs? (3)
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How Does Spectral IR Test GCMs? (3)
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How Does Spectral IR Test GCMs? (3)

c(Tropospheric Temperature) = 0.9767

c(Water Vapor) = 0.9577
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Water Vapor-Longwave Feedback Precision After
20 Years

Linear Trend Analysis

Correlation Analysis

(W m2K1) (W m2K1)
Truth Data Truth Data
GFDL CM2.0 3.30 +1.85 3.20 + 1.85 2.75 +0.20 2.53 +0.18
GISS E-H 2.63 + 0.81 2.95 + 0.62 2.61 +0.10 2.94 +0.12
MIROC3.2 2.81 +0.85 2.53 + 0.62 2.68 + 0.13 2.49 + 0.10
ECHAMS 3.14 +1.60 3.53+1.81 2.98 + 0.08 3.36 £ 0.10
CCSM3 2.80 + 0.92 2.81 +0.91 2.66 + 0.17 2.66 + 0.16
HadCM3 3.10 + 1.48 2.65+1.15 2.78 £ 0.09 2.74 £ 0.11
A\ AN
Y Y
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Water Vapor-Longwave Feedback Precision After
20 Years

Linear Trend Analysis Correlation Analysis
(W m2K1?) (W m2K1)

Optimization: Little as of yet, but

M inclusion of the spatial dimension
should yield substantial improvement.

ECHAMS 3.14 + 1.60 3.53+1.81 2.98 + 0.08 3.36 £ 0.10
CCSM3 2.80 + 0.92 2.81 £ 0.91 2.66 + 0.17 2.66 + 0.16
HadCM3 3.10 + 1.48 2.65 +1.15 2.78 £ 0.09 2.74 £ 0.11
I\ AN J
Y Y
...scales as (Af)3/2 ...scales as (Af)1/2
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Accuracy Requirements, Detection Times

o With observations traceable to international standards, one
evaluates the uncertainty (accuracy) of individual measurements in
a timeseries.

e Any timeseries of climate data includes both natural variability with
standard deviation g, timescale 7,, and measurement uncertainty
(g,and 7).

With a timeseries of length A¢ the uncertainty in the determination of
the slope determination is

om* =12(80)° (o7, + o7, )

Leroy, S.S., J.G. Anderson, and G. Ohring, 2008: Climate signal detection
times and constraints on climate benchmark accuracy requirements. J.
Climate, 21, 841-846.
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Measurement Uncertainty & Detection Times

Leroy, S.S., J.G. Anderson, and G. Ohring, 2008: Climate signal detection times and constraints on
climate benchmark accuracy requirements. J. Climate, 21, 841-846.

fi levels of i
50% 90% 9&? 'den%eg_ggggi/f detection Global temperature at 500 hPa

II- Three satellites, 6-year lifetime.

Natural variability: 0.18 K, 1.54 year
Test for human influence correlation time (UKMO HadCM3),
Trend: ~0.2 K decade.

Meas. Uncertainty Optimization has the effect of
002K lowering the entire family of curves.
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Discussion: Next Steps

o All-sky conditions
— Explore potential for optimization: expand into spatial dimension
— Cloud Feedback Model Intercomparison Project
— Potentially GISS E-R in perturbed physics ensemble
— Fast forward model for radiance (AER’s OSS)

e Anticipated results
— Information content in far infrared (100-300 cm-1)
— Information content as a function of spectral resolution
— Information content in joint GPS RO — Spectral IR data vector
— Accuracy requirements

e Shortwave OSSE

— Separating response (clouds) from forcing (aerosol)
— Exploring necessary dimensionality: observation — SW1
— Accuracy requirements

21 October 2008 CLARREOQ: Feedbacks and Sensitivity
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Model-predicted Trends in the IR
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Model-predicted Trends in the IR

Anthropogenic Forcing Climate Response
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Deconstructing the IR Signal
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Deconstructing the IR Signal

21 October 2008 CLARREOQ: Feedbacks and Sensitivity

——

37



Deconstructing the IR Signal
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Deconstructing the IR Signal
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Deconstructing the IR Signal

21 October 2008 CLARREOQ: Feedbacks and Sensitivity

40



Reconstructing the IR Signal
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Reconstructing the IR Signal
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Reconstructing the IR Signal
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... which is Optimal Fingerprinting

Find signal amplitudes (a,) and uncertainty (Z,) in a data set (d)
according to the signals’ patterns (s,) against a background of
natural variability, the eigenvectors and eigenvalues of which
are e, and A,
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... which 1s Optimal Fingerprinting

Signal #1 Signal #2 Signal #3 Signal #4

Find signal ampl
according to
natural varial
are e, and A,

1000 2000 1000 2000 1000 2000 1000 2000

Eigenvector #1 Eigenvector #2 Eigenvector #3 Eigenvector #4

J Ve

1000 2000 1000 2000 1000 2000 1000 2000
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